Search results for "Multilayer Perceptron"

showing 10 items of 52 documents

Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2017

Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…

010504 meteorology & atmospheric sciencesComputer scienceUAV0211 other engineering and technologiesPoint cloudta117102 engineering and technologyradiometryphotogrammetry01 natural sciencesforestComputer visionForestRadiometrylcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingfotogrammetriata113UAV; hyperspectral; photogrammetry; radiometry; point cloud; forest; classificationluokitus (toiminta)ta114business.industryHyperspectral imaging15. Life on landOtaNanoClassificationRandom forestPoint cloudTree (data structure)PhotogrammetryhyperspectralHyperspectralclassification13. Climate actionMultilayer perceptronPhotogrammetryGeneral Earth and Planetary SciencesRadiometryRGB color modellcsh:QArtificial intelligencebusinesspoint cloudRemote Sensing; Volume 9; Issue 3; Pages: 185
researchProduct

Dosage individualization of erythropoietin using a profile-dependent support vector regression

2003

The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its side-effects and the phenomenon of potential resistance which some individuals suffer all justify the need for a model which is capable of optimizing dosage individualization. A group of 110 patients and several patient factors were used to develop the models. The support vector regressor (SVR) is benchmarked with the classical multilayer percept…

AdultAnemia HemolyticInjections SubcutaneousAutoregressive conditional heteroskedasticityBiomedical EngineeringMachine learningcomputer.software_genreCohort StudiesHemoglobinsRenal DialysisFeature (machine learning)HumansMedicineSensitivity (control systems)Time seriesErythropoietinAgedAged 80 and overArtificial neural networkbusiness.industryMiddle AgedRecombinant ProteinsRegressionDrug Therapy Computer-AssistedRegression PsychologySupport vector machineTreatment OutcomeMultilayer perceptronKidney Failure ChronicNeural Networks ComputerArtificial intelligencebusinesscomputerAlgorithmsBiomedical engineeringIEEE Transactions on Biomedical Engineering
researchProduct

Artificial Neural Networks to Predict the Power Output of a PV Panel

2014

The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma m…

Article SubjectArtificial neural networkRenewable Energy Sustainability and the EnvironmentComputer scienceneural networklcsh:TJ807-830Computer Science::Neural and Evolutionary ComputationPhotovoltaic systemlcsh:Renewable energy sourcesControl engineeringGeneral ChemistrySolar irradianceNetwork topologyAtomic and Molecular Physics and OpticsBackpropagationphotovoltaicsRecurrent neural networkElectricity generationMultilayer perceptronneural networks; photovoltaicsGeneral Materials SciencePhysics::Atmospheric and Oceanic Physics
researchProduct

Collecting and Using Students’ Digital Well-Being Data in Multidisciplinary Teaching

2018

This article examines how students (N=198; aged 13 to 17) experienced the new methods for sensor-based learning in multidisciplinary teaching in lower and upper secondary education that combine the use of new sensor technology and learning from self-produced well-being data. The aim was to explore how students perceived new methods from the point of view of their learning and did the teaching methods provide new information that could promote their own well-being. We also aimed to find out how to collect digital well-being data from a large number of students and how the collected big data set can be utilized to predict school success from the students’ well-being data by using machine lear…

Article SubjectoppiminenComputer scienceTeaching methodhyvinvointiBig dataMachine learningcomputer.software_genrelcsh:Education (General)EducationCorrelation03 medical and health sciences0302 clinical medicineMultidisciplinary approachta516Set (psychology)ta113studentsopiskelijatPoint (typography)business.industry05 social sciences050301 educationdigital well-being datadataMultilayer perceptronWell-beingArtificial intelligencelcsh:L7-991business0503 educationcomputermultidisciplinary teaching030217 neurology & neurosurgeryEducation Research International
researchProduct

Artificial Neural Networks and Linear Discriminant Analysis:  A Valuable Combination in the Selection of New Antibacterial Compounds

2004

A set of topological descriptors has been used to discriminate between antibacterial and nonantibacterial drugs. Topological descriptors are simple integers calculated from the molecular structure represented in SMILES format. The methods used for antibacterial activity discrimination were linear discriminant analysis (LDA) and artificial neural networks of a multilayer perceptron (MLP) type. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval of the discriminant function and the output value of the neural network versus these values. Pharmacological distribution diagrams (PDD) were used as a visualizing technique for the i…

Artificial neural networkChemistrybusiness.industryComputer Science::Neural and Evolutionary ComputationDiscriminant AnalysisPattern recognitionGeneral MedicineMicrobial Sensitivity TestsGeneral ChemistryFunction (mathematics)Interval (mathematics)Linear discriminant analysisPlot (graphics)Anti-Bacterial AgentsQuantitative Biology::Cell BehaviorComputer Science ApplicationsComputational Theory and MathematicsDiscriminative modelDiscriminant function analysisMultilayer perceptronNeural Networks ComputerArtificial intelligencebusinessInformation SystemsMathematicsJournal of Chemical Information and Computer Sciences
researchProduct

Assigning discounts in a marketing campaign by using reinforcement learning and neural networks

2009

In this work, RL is used to find an optimal policy for a marketing campaign. Data show a complex characterization of state and action spaces. Two approaches are proposed to circumvent this problem. The first approach is based on the self-organizing map (SOM), which is used to aggregate states. The second approach uses a multilayer perceptron (MLP) to carry out a regression of the action-value function. The results indicate that both approaches can improve a targeted marketing campaign. Moreover, the SOM approach allows an intuitive interpretation of the results, and the MLP approach yields robust results with generalization capabilities.

Artificial neural networkComputer scienceGeneralizationbusiness.industrymedia_common.quotation_subjectAggregate (data warehouse)General EngineeringMachine learningcomputer.software_genreComputer Science ApplicationsFunction approximationArtificial IntelligenceMultilayer perceptronReinforcement learningState (computer science)Artificial intelligenceFunction (engineering)businesscomputermedia_commonExpert Systems with Applications
researchProduct

Crane collision modelling using a neural network approach

2004

Abstract The objective of the present work is to find a Collision Detection algorithm to be used in the Virtual Reality crane simulator (UVSim®), developed by the Robotics Institute of the University of Valencia for the Port of Valencia. The method is applicable to box-shaped objects and is based on the relationship between the colliding object positions and their impact points. The tool chosen to solve the problem is a neural network, the multilayer perceptron, which adapts to the characteristics of the problem, namely, non-linearity, a large amount of data, and no a priori knowledge. The results achieved by the neural network are very satisfactory for the case of box-shaped objects. Furth…

Artificial neural networkComputer sciencebusiness.industryGeneral EngineeringRoboticsObject (computer science)CollisionComputer Science ApplicationsArtificial IntelligenceSimulació per ordinadorMultilayer perceptronXarxes neuronals (Informàtica)Collision detectionArtificial intelligencebusinessAlgorithmGantry craneExpert Systems with Applications
researchProduct

Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function

2006

This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.

Artificial neural networkComputer sciencebusiness.industryTime delay neural networkCognitive NeuroscienceActivation functionRectifier (neural networks)PerceptronFuzzy logicComputer Science ApplicationsArtificial IntelligenceMultilayer perceptronFeedforward neural networkPruning (decision trees)Artificial intelligenceTypes of artificial neural networksbusinessNeurocomputing
researchProduct

Classical Training Methods

2006

This chapter reviews classical training methods for multilayer neural networks. These methods are widely used for classification and function modelling tasks. Nevertheless, they show a number of flaws or drawbacks that should be addressed in the development of such systems. They work by searching the minimum of an error function which defines the optimal behaviour of the neural network. Different standard problems are used to show the capabilities of these models; in particular, we have benchmarked the algorithms in a nonlinear classification problem and in three function modelling problems.

Artificial neural networkComputer sciencebusiness.industrymedia_common.quotation_subjectTraining methodsMachine learningcomputer.software_genreError functionDelta ruleMultilayer perceptronArtificial intelligenceNonlinear classificationbusinessFunction (engineering)computermedia_common
researchProduct

Identification of the Parameters of Reduced Vector Preisach Model by Neural Networks

2008

This paper presents a methodology for identifying reduced vector Preisach model parameters by using neural networks. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. The network is trained by some hysteresis data, which are generated by using reduced vector Preisach model with preassigned parameters. It is shown how a properly trained network is able to find the parameters needed to best fit a magnetization hysteresis curve.

Artificial neural networkEstimation theoryComputer sciencebusiness.industryDifferential equationComputer Science::Neural and Evolutionary ComputationPattern recognitionMagnetic hysteresisPerceptronMagnetic susceptibilityElectronic Optical and Magnetic MaterialsIdentification (information)MagnetizationHysteresisMultilayer perceptronArtificial intelligenceElectrical and Electronic EngineeringbusinessSaturation (magnetic)
researchProduct