Search results for "Multilayer Perceptron"
showing 10 items of 52 documents
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…
Dosage individualization of erythropoietin using a profile-dependent support vector regression
2003
The external administration of recombinant human erythropoietin is the chosen treatment for those patients with secondary anemia due to chronic renal failure in periodic hemodialysis. The objective of this paper is to carry out an individualized prediction of the EPO dosage to be administered to those patients. The high cost of this medication, its side-effects and the phenomenon of potential resistance which some individuals suffer all justify the need for a model which is capable of optimizing dosage individualization. A group of 110 patients and several patient factors were used to develop the models. The support vector regressor (SVR) is benchmarked with the classical multilayer percept…
Artificial Neural Networks to Predict the Power Output of a PV Panel
2014
The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma m…
Collecting and Using Students’ Digital Well-Being Data in Multidisciplinary Teaching
2018
This article examines how students (N=198; aged 13 to 17) experienced the new methods for sensor-based learning in multidisciplinary teaching in lower and upper secondary education that combine the use of new sensor technology and learning from self-produced well-being data. The aim was to explore how students perceived new methods from the point of view of their learning and did the teaching methods provide new information that could promote their own well-being. We also aimed to find out how to collect digital well-being data from a large number of students and how the collected big data set can be utilized to predict school success from the students’ well-being data by using machine lear…
Artificial Neural Networks and Linear Discriminant Analysis: A Valuable Combination in the Selection of New Antibacterial Compounds
2004
A set of topological descriptors has been used to discriminate between antibacterial and nonantibacterial drugs. Topological descriptors are simple integers calculated from the molecular structure represented in SMILES format. The methods used for antibacterial activity discrimination were linear discriminant analysis (LDA) and artificial neural networks of a multilayer perceptron (MLP) type. The following plot frequency distribution diagrams were used: a function of the number of drugs within a value interval of the discriminant function and the output value of the neural network versus these values. Pharmacological distribution diagrams (PDD) were used as a visualizing technique for the i…
Assigning discounts in a marketing campaign by using reinforcement learning and neural networks
2009
In this work, RL is used to find an optimal policy for a marketing campaign. Data show a complex characterization of state and action spaces. Two approaches are proposed to circumvent this problem. The first approach is based on the self-organizing map (SOM), which is used to aggregate states. The second approach uses a multilayer perceptron (MLP) to carry out a regression of the action-value function. The results indicate that both approaches can improve a targeted marketing campaign. Moreover, the SOM approach allows an intuitive interpretation of the results, and the MLP approach yields robust results with generalization capabilities.
Crane collision modelling using a neural network approach
2004
Abstract The objective of the present work is to find a Collision Detection algorithm to be used in the Virtual Reality crane simulator (UVSim®), developed by the Robotics Institute of the University of Valencia for the Port of Valencia. The method is applicable to box-shaped objects and is based on the relationship between the colliding object positions and their impact points. The tool chosen to solve the problem is a neural network, the multilayer perceptron, which adapts to the characteristics of the problem, namely, non-linearity, a large amount of data, and no a priori knowledge. The results achieved by the neural network are very satisfactory for the case of box-shaped objects. Furth…
Efficient pruning of multilayer perceptrons using a fuzzy sigmoid activation function
2006
This Letter presents a simple and powerful pruning method for multilayer feed forward neural networks based on the fuzzy sigmoid activation function presented in [E. Soria, J. Martin, G. Camps, A. Serrano, J. Calpe, L. Gomez, A low-complexity fuzzy activation function for artificial neural networks, IEEE Trans. Neural Networks 14(6) (2003) 1576-1579]. Successful performance is obtained in standard function approximation and channel equalization problems. Pruning allows to reduce network complexity considerably, achieving a similar performance to that obtained by unpruned networks.
Classical Training Methods
2006
This chapter reviews classical training methods for multilayer neural networks. These methods are widely used for classification and function modelling tasks. Nevertheless, they show a number of flaws or drawbacks that should be addressed in the development of such systems. They work by searching the minimum of an error function which defines the optimal behaviour of the neural network. Different standard problems are used to show the capabilities of these models; in particular, we have benchmarked the algorithms in a nonlinear classification problem and in three function modelling problems.
Identification of the Parameters of Reduced Vector Preisach Model by Neural Networks
2008
This paper presents a methodology for identifying reduced vector Preisach model parameters by using neural networks. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. The network is trained by some hysteresis data, which are generated by using reduced vector Preisach model with preassigned parameters. It is shown how a properly trained network is able to find the parameters needed to best fit a magnetization hysteresis curve.